open access publication

Article, 2024

Agile digital machine development

Computers in Industry, ISSN 0166-3615, Volume 155, 10.1016/j.compind.2023.104061

Contributors

de Oliveira Hansen J.P. 0000-0003-4554-2762 (Corresponding author) [1] Ribeiro da Silva E. 0000-0002-6608-0993 [1] Bilberg A. 0000-0002-4780-8459 [1]

Affiliations

  1. [1] University of Southern Denmark
  2. [NORA names: SDU University of Southern Denmark; University; Denmark; Europe, EU; Nordic; OECD]

Abstract

In mechatronic machine design and development, it is no longer enough to think about machine functionality and integration as machines are increasingly digitalized. Virtual upgrades are being made to manufacturing systems to keep up with the need for faster product cycles, higher quality, and the introduction of Industry 4.0 technologies. The design and development of new mechatronic discrete manufacturing machines (MDMM) should thus include these characteristics in their design. However, most machine builders do not have the capabilities and resources to do virtual engineering (VE) at the required level, which means these machines are made with limitations or sometimes without their virtual counterparts. Reusable VE MDMM modularization allows machine builders to obtain these competencies quickly and with fewer resources. This research proposes developing adaptable digital twins (DT) by modularizing all virtual and physical mechatronic machine aspects. DTs are well-explored in literature, but re-engineering them requires massive resources and is often unviable. We introduce a new DT-based approach that allows machine builders to quickly re-engineer, adapt, and test machines, given its modular confined approach. Although VE on different abstraction levels still must be developed, confined modularization allows hiding the complexity into modules rather than addressing the entire machine simultaneously. Building machines through modularization is thus an investment, as machine builders and other stakeholders will be able to use and reuse them later for other machines, reducing the overall resources that go into the development. The paper shows how to develop adaptable DT machines using Siemens tools related to virtual engineering.

Keywords

Adaptability, Digital Twins, Machine Development, Modularization, Reconfigurability, Virtual Engineering

Funders

  • Manufacturing Academy of Denmark
  • MADE FAST

Data Provider: Elsevier